-
科學家發現可“吃”二氧化碳的新材料
美國研究人員最新開發出一種與大氣中二氧化碳發生反應后“生長”的復合材料,未來有望用作建筑材料或修復材料和防護涂料。 近日發表在美國《先進材料》雜志上的研究顯示,這種凝膠材料可以像植物一樣吸收二氧化碳后生長,因此可用來制成輕質板材,運送到建筑工地,接觸空氣和陽光后會變得堅硬起來,從而節省了能源和運輸成本,同時消耗了大氣中的二氧化碳。 論文共同作者、美國麻省理工學院化學工程學教授邁克爾·斯特拉諾說,此前生物界以外的固碳材料還不存在,而新材料只需要更多 +
-
氮15同位素是古人類食物結構研究中的重要元素
關于氮同位素,是指氮十五的分析與應用。氮十五也是古人類食物結構研究中的重要元素,它所表征的內容與碳十三是互補的,反映人類食物組成中蛋白質的攝入程度。通常食肉較多的人較之僅是依靠植物類生存的人其體內氮十五比值明顯偏高,而食魚較多的人,體內氮十五的比值會更高。一般食物鏈越長,其氮十五比值就越高,它反映了營養級的高低。氮十五分析用于古人類食物結構研究,國外是在上世紀70年代后逐漸開展起來的。由于氮本身的特性,與碳十三相比其分析難度要大得多,因之國內的研究起步較晚。2001年后,考古所碳十四實驗室通過反復實驗與研究,應用元更多 +
-
碳13、碳14同位素對考古研究的重要意義
碳氏家族的兄弟主要有3個,碳十二、碳十三和碳十四。它們在自然界中的豐度分布分別是碳十二約占98.9%,碳十三約占1.1%,碳十四約占10-10%。而恰恰是后兩者豐度較低的碳同位素,成為考古學研究中的“示蹤劑”,受到世人的關注。中科院考古所碳十四實驗室從事的正是通過碳十四、碳十三這樣兩個碳氏家族成員的分析來探討人類的過去。 碳十四又被稱作人類的放射性時鐘。之所以有此,在于它的紀年特性。碳十四是一種放射性同位素,半衰期為5730年。也就是說每過5730年,其數量就衰減一半。它由更多 +
-
釕單原子催化劑,實現高效氮氣電還原合成氨
目前,在工業上通過哈伯法合成氨需要高溫高壓(150-350 atm, 350-550℃)。這種苛刻的條件每年需要消耗全世界1-2%的能源供應。此外,傳統的哈伯法合成氨需要氫氣作為原料之一,而傳統制氫的過程會排放大量CO2。因此,探索在溫和條件下合成氨的催化反應顯得尤為重要。 近日,中國科學技術大學曾杰教授研究團隊和中科院上海應用物理研究所司銳教授合作,通過構筑原子級分散的釕催化劑實現高效氮氣電還原合成氨。這種釕單原子催化劑在電催化還原氮氣反應中表現出的產氨速率是現有報道的最高值。該成果發表在《先進更多 +
-
低氘水到底和健康有什么關系?
許多人說低氘水能促進健康,相反也有研究認為低氘水可以治療癌癥。到底低氘水是和健康有什么關系,是好還是壞? 人們已經發現氫氣對疾病治療和健康促進的神奇效應,紐小編了解到含氫氣水能作為攝取氫氣的理想方法! 1932年,科學家發現對普通水進行電解,氕優先在電極上放出,因此在水被連續進行電解時,氘會富集在電解液中,用適當方法電解老電解槽中的富氘水溶液,就可以獲得純的氘氣。 由于原子能技術的需要,用鈾作為原料的原子反應堆中,需要用重水作中子減速劑,這一技術需求促進了濃縮氘更多 +
-
同位素示蹤法在各行業的應用
工業中的應用 在工業活動中,示蹤原子為使用多種高性能的檢測方法和生產過程自動控制方法提供了可能性,克服了傳統檢測方法難以完成甚至無法完成的難題。如石油工業中采用放射性核素示蹤微球等方法測繪注水井吸水剖面,為評價地層,調整注水量的分配,實現石油的增產和穩定做出了貢獻。在機械工業中可用氪(85Kr)化技術進行機械磨損研究,測量一些其他方法不能完成的運動部件的最高工作溫度和溫度分布。此外,這一靈敏度很高的85Kr檢漏方法也在機械工業產品、機械零部件和金屬真空系統的檢漏,以及電子工業半導體更多 +
-
氦透平膨脹機你了解么?
隨著超導技術、太空探索以及大型低溫項目的發展的需要,氦制冷/液化系統發揮著至關重要的作用,而高效穩定的氦透平膨脹機是氦制冷/液化系統的關鍵設備。因此,開展具有高性能的氦透平膨脹機的研究,對國內在超導、加速器、空間環境模擬等重大國防科研項目的研究具有非常重要的意義。 氦氣膨脹機具有微型化、高轉速、低振動、長壽命等特點,在制冷溫度和制冷量上都有著不可替代的優勢。氦氣膨脹機的主要特點:進口介質溫度低,膨脹比大,尤其在小流量時,工作葉輪直徑小,膨脹比焓降大,轉子轉速高,轉子穩定性和動平衡要求嚴格。 &n更多 +
-
氙氣客戶:北京動力機械研究所
北京動力機械研究所成立于1957年,現有12個研究室、4個中心,擁有1個國防重點實驗室和1個國家重點實驗室,承擔中小型渦輪噴氣發動機、渦輪風扇發動機、固體火箭發動機、沖壓發動機、組合發動機等動力裝置的研制與生產;建有完備的科研管理、質量管理、物資、條件建設、技術安全等技術保障系統和基礎管理保障體系。更多 +
-
淺談二氧化碳驅油技術
大慶勘探開發研究院通過開創性的氣驅油藏工程方法研究,基本形成了二氧化碳驅油綜合調整技術,其項目成果在榆樹林和海拉爾油田得到規模化應用。實施綜合調整后,試驗區氣油比上升速度得到控制,采油井受效明顯。這不僅有力支撐了外圍油田的穩產,也為大慶薄差油層增儲上產增添科技底氣。 截至目前,大慶油田二氧化碳驅油工業化試驗區自開展試驗以來,累計注氣136萬噸,二氧化碳驅累計產油39萬噸。其中,在海拉爾油田,貝14試驗區的受效程度明顯提高,部分井開采方式由抽油轉為自噴;在榆樹林油田樹101試驗區穩油控氣,扶楊三類難更多 +
-
溫室氣體“二氧化碳”竟能發電?
作為溫室氣體的主要成分,二氧化碳的排放問題一直是各方關注的焦點。紐瑞德了解到,一家美國公司嘗試將“麻煩”轉變為資源。 位于美國休斯頓,一座裝機容量為50MW的并網天然氣發電站上測試一項新型發電技術。這項新技術所使用的燃料中包含95%的超臨界CO2。按照NET Power計劃,如示范電站取得成功,將在2021年前完成該技術的商業化應用。 將CO2變為燃料的關鍵在于通過一定的溫度和壓力使CO2達到超臨界流體狀態。研究人員表示,在31.1 °更多 +